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The results of direct numerical solution of the kinetic equation for the droplet size distribution function
are presented. This method which is not restricted by the Knudsen number was developed using the anal-
ogy with a similar method of solution of the Boltzmann kinetic equation. The simulation of vapor behav-
ior at fast creation of supersaturation state in vapor–gas mixture by means of adiabatic expansion was
carried out for the verification of the method. The results obtained by this method were compared with
those which were obtained by using the method of moments over a broad range of Knudsen number. The
relevance of taking into account the dependence between saturation pressure and droplet size on the
dynamics of condensational relaxation was studied.
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1. Introduction

Description of bulk condensation kinetics in various devices
includes numerical solution of system of equations for condensa-
tion kinetics and gas dynamics in formulation which corresponds
to solved problem. Apparently, this approach was proposed in
[1]. Results of such solution have concrete character, and in general
they can be applied only to a considered case. Alternative idea,
which was proposed and implemented in [2–4], is choose of such
method of treatment for obtained calculation data in order for
results for simple problem to have general character. In the
mentioned papers a simulation of vapor behavior in a mixture with
non-condensing gas at adiabatic expansion was such simple
problem (statement of a problem is submitted below).

Simulation of bulk condensation of supersaturated vapor was
carried out on the basis of the numerical solution of the kinetic
equation for droplet size distribution function by method of the
moments (see, e.g. [5,6]). The physical kinetics methodology was
used for the analysis of simulation results. Bulk condensation
was considered as a relaxation process (condensation relaxation)
with characteristic time sc, which was determined as a time inter-
val during which initial value of supersaturation ratio decreases by
a factor of e. Use of such approach by analogy with second-order
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phase transitions made possible to obtain scaling correlations for
the important characteristics of first-order phase transition, in par-
ticular numerical density of formed droplets nd and time of con-
densational relaxation sc. Also it turned out to be possible to take
into account disturbances of thermodynamic parameters of pro-
cess (temperature and pressure) relative to average values. It was
noted that some time interval existed in beginning of condensation
relaxation, during which new droplets formed with constant
nucleation rate at nearly constant values of temperature and
supersaturation ratio. This time interval was called the induction
period si by analogy to combustion theory. Relation between the
induction period and the nucleation rate was established at initial
values of temperature and supersaturation ratio. In opinion of
authors of [3], obtained relations give a principal possibility for
experimental determination of nucleation rate one more method.
As against many existing methods [7], it can allow to determine
the nucleation rate at that stage when nucleating droplets cannot
be detected by optical methods.

This paper has the following structure. The problem formula-
tion for condensation relaxation of supersaturated vapor in a mix-
ture with non-condensing gas is presented in Section 2. Also the
appropriate system of the equations is presented in Section 2. In
Section 3, the new method offered by authors for solving the ki-
netic equation for droplet size distribution function is described.
In Section 4, the results of application of the method offered by
authors are submitted, and the comparative analysis is given for
obtained results and the solution of the same problem with use
of a method of the moments. The basic deductions on work are gi-
ven in Section 5.
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Nomenclature

Cp specific heat
D diffusion coefficient
f droplet size distribution function
F velocity distribution function of molecules
g mass fraction
I nucleation rate
J the collision integral
Kn Knudsen number
L evaporation heat
n number density
NA Avogadro number
p pressure
r droplet radius
_r droplet growth rate
R the universal gas constant
s supersaturation ratio
t time
T temperature
vT thermal velocity of molecules
V volume

Greek symbols
a condensation coefficient
c adiabatic index
k mean free path of molecules
l molar mass
n molecular velocity
q density
X moment of distribution function

Subscripts and superscripts
cr critical radius
d parameter of droplets
i node number in the droplet radius grid
j time step number
l parameter of liquid
n order of moment
s parameter in state of saturation
v parameter of vapor
R parameter of vapor–gas–droplets mixture
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2. Formulation of the relaxation problem

We considered a mixture of vapor and incondensable gas in an
adiabatically isolated cylinder with a moving plunger. At the initial
time moment, the vapor is in a steady state at the saturation. Then
plunger begins to move, and the velocity of plunger governs the
rate of the vapor–gas mixture expansion and the rate of the vapor
supersaturation development. The motion of plunger in turn deter-
mines the degree of the expansion (the ratio of current volume V to
initial volume V0) and the vapor supersaturation ratio s ¼ pv=ps

1ðTÞ,
where ps

1ðTÞ is the saturation pressure over a flat vapor–liquid
interface. It was shown in [4] that the supersaturation ratio can
be found from following equation:

d ln s
dt
¼ A1

d ln V
dt
� apr2

dndvTA2: ð1Þ

Here

A1 ¼ ðc� 1Þ Llv

RT
� c

c� 1

� �
; A2 ¼ 1þ gv

L
CpT

Llv

RT
� 1

� �
; ð2Þ

where c is the adiabatic index, L is the heat of evaporation, Cp is the spe-
cific heat of the vapor–gas–droplet mixture, vT is the thermal velocity
of vapor molecules, gv is the vapor mass fraction in the mixture, nd is
the droplet-number density, and rd is the average droplet size.

The first term in right part of (1) describes increase of the super-
saturation ratio due to the adiabatic expansion, while the second
one describes decrease of the supersaturation ratio due to vapor
phase depletion (the first term in A2) and to an increase in the tem-
perature caused by the heat of the phase transition (the second
term in A2). Eq. (1) was obtained with use of definition of the
supersaturation ratio, the temperature dependence of the satura-
tion pressure according to the Clausius–Clapeyron equation, the
Poisson adiabatic equation, and the vapor state equation, as well
as the balance equations for energy and number of vapor
molecules:

qRCp
dT
dt
¼ Llv

NA

dnc

dt
; ð3Þ

dnc

dt
¼ �dnv

dt
: ð4Þ

Also it was taken into account that number of vapor molecules
decreased due to their collision with droplets with probability a:
dnv

dt
¼ �apr2

dVTndnv: ð5Þ

Here nv and nc are the number densities of vapor and condensate
molecules, respectively, and NA is Avogadro number. It should be
noted that use of united energy balance equation for both phases
in the form (3) is possible if temperature of droplets is equal to
one of vapor–gas mixture. We call this case further as one-temper-
ature model [2]. This model was used in this paper as well as in [2–
4], and this allowed comparing obtained results.

At such an approach, it is quite possible to account for that
fact that the heat release during condensation occurs on the sur-
face of growing droplets followed by the heat transfer to the gas-
eous phase at a finite rate. In this case, droplets turned out to be
superheated compared with the vapor, thus retarding the pro-
cesses of droplet nucleation and growth. The limits of the varia-
tions in droplet temperature are known. At the lower limit, this
is the temperature that is identical for both phases. At the upper
limit this is the saturation temperature corresponding to the va-
por pressure above droplet (the ‘‘Oswatitsch assumption”). The
one-temperature model is closer to the real situation the higher
the vapor dilution with non-condensing gas and the lower the
coefficient of condensation. Otherwise, the ‘‘Oswatitsch assump-
tion” is close to reality.

The value of ndr2
d in Eq. (1) is virtually the second moment of drop-

let size distribution function. For this reason system of equations,
which describes process of condensational relaxation, should in-
clude corresponding equation for distribution function. This equa-
tion has the following form (see, e.g. [5,6]) for homogeneous
condensation in an immovable medium without coagulation of
droplets:

of
ot
þ oð_rf Þ

or
¼ I

qR
dðr � rcrÞ: ð6Þ

Here f is the mass distribution function of droplet sizes, r is the
droplet radius, _r is the droplet growth rate, I is the nucleation rate,
qR is the density of the vapor–gas–droplets mixture, d is the delta
function, and rcr is the critical droplet radius.

If volume condensation is studied, and then overall characteris-
tics of process are of interest usually. Numerical density of drop-
lets, their average size, mass or volume fraction of liquid can be
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mentioned among these parameters. These values can be found as
moments of distribution function:

Xn ¼
Z 1

rcr

rnf dr: ð7Þ

The zero moment is number of droplets per unit of mixture mass,
the third one is their total volume per unit of mixture mass, etc.

As in the kinetic theory of gases, the method of moments [5] can
be used to solve the kinetic equation (6). This method allows
obtaining system of equations for first four moments of distribu-
tion function. This system is equivalent of the kinetic equation
(6). In order to do this the kinetic equation (6) should be multiplied
by rn (n = 0, . . .,3) and then integrated over the droplet radius:

dXn

dt
¼ n

Z 1

rcr

_rrn�1f ðr; tÞdr þ I
qR

rn
cr: ð8Þ

Similar approach based on the kinetic equation and moment equa-
tions deduced from it was proposed in [5] to study processes of
crystallization.

If droplet growth rate does not depend on droplet radius, then
the system (8) can be simplified and written as system of differen-
tial equations for moments of distribution function:

dXn

dt
¼ n_rXn�1 þ

I
qR

rn
cr: ð9Þ

It should be noted that the moment equation (9) are identical to the
‘‘Hill chain” [8]. These equations were widely used in works of dif-
ferent authors (see, e.g. [6]). If method of moments is used to solve
the kinetic equation (6), then moments Xn are obtained as solution,
and the distribution function can be calculated from these moments
if this is necessary.

The kinetic equation for droplet size distribution function (6)
and the set of Eqs. (1)–(5) describe the process of condensation
relaxation under adiabatic conditions with allowance for heat lib-
eration when vapor volume varies with time according to an arbi-
trary law. In the described higher particular case the kinetic
equation (6) is replaced by the set of moment equation (8). Such
approach was used in [2–4]; in this paper, we obtained solutions
directly from the initial kinetic equation (6). As well as in
[2,3,11] in this work we considered the case in which supersatura-
tion instantly reaches a preset value. From the physical viewpoint,
it means that the time of vapor expansion is much less than the
time of vapor condensation. So we could ignore the condensation
at the expansion stage and to employ only the second term in
the right side of Eq. (1). Later the supersaturation ratio decreases
in according to (1) due to both decrease of the vapor partial pres-
sure and rise in the saturation pressure, which grows because of an
increase in the system temperature upon vapor condensation.
3. Method of direct numerical solution

The important applicability condition of the method of mo-
ments is absence of radius dependence for droplet growth rate.
This condition holds only if droplet radius is much smaller than
mean free path of vapor molecules, that is, at large Knudsen num-
bers Kn = k/r. At small or moderate Knudsen numbers droplet
growth rate depends on droplet size. In this case transition from
the set (8) to set (9) cannot be done, and moment equations remain
integer-differential and difficult to solve. Due to this a choice be-
tween two approaches is required. First approach is solution of
moment equation (8); second one is solution of the kinetic equa-
tion (6). In the latter case moments of distribution function, which
determine basic parameters of condensation aerosol, can be found
from distribution function, which is obtained as result of solution.
In principle, it is possible to simplify the system (8) for elimination
of droplet radius (for example, in [9,10]). However, some assump-
tions should be adopted for use of such approach. Validity of these
assumptions can be proved by use of more accurate methods. Such
estimations are one of our results and are presented later.

This paper is development of our previous work [12], in which
we proposed new method for simulation of supersaturated vapor
bulk condensation. In our method the kinetic equation (6) is solved
instead of the integer-differential moment equation (8). We used
the experience of the direct numerical solution of the Boltzmann
kinetic equation, which is widely used for study of evaporation
and condensation on surfaces. For one-dimensional non-stationary
problem it has following form [13]:

oF
ot
þ nx

oF
ox
¼ JðFÞ: ð10Þ

Here F is the velocity distribution function of molecules, nx is the
projection of the molecule velocity onto the x-axis, and J is the col-
lision integral:

JðFÞ ¼
Z 1

0

Z 2p

0

Z þ1

�1

Z þ1

�1

Z þ1

�1

ðF 0F 01 � FF1Þjgjbdbdedn1x dn1y dn1z;

ð11Þ

where F = F(n), F1 = F(n1), F0 = F(n0), F 01 ¼ Fðn01Þ, n1 and n are velocities
before collision, n01 and n0 are ones after collision, g = n1 � n is the
relative velocity, b is the impact parameter, e is the angular param-
eter of interaction. Values of n01 and n0 depend on the values of n1, n,
b and e, as well as on the potential of molecular interaction.

To date different methods were proposed for solution of the
Boltzmann kinetic equation. Among them are method of moments
and method of direct numerical solution. The method of moments
for the Boltzmann equation solution was once employed to develop
a similar method for the solution of the basic kinetic equation of bulk
condensation. Problem of intensive evaporation and condensation
on phase boundary can be noted as an example of the Boltzmann
equation solution by method of moments [14]. It should be noted
that method of moments allows obtaining solution only for one-
dimensional stationary problems that is its main disadvantage.

The method of direct numerical solution of the Boltzmann ki-
netic equation was developed in the Computing Center of the Rus-
sian Academy of Sciences. There are several variants of this method
[15,16], in which different approaches to the calculation of the col-
lision integral are used. In this method the physical process is di-
vided into separate stages on each step of time. The first stage is
the free molecular flow

oF
ot
þ nx

oF
ox
¼ 0; ð12Þ

the second stage is the spatially uniform relaxation

oF
ot
¼ JðFÞ: ð13Þ

Eqs. (12) and (13) decide one by one. The solution of Eq. (12) is the
initial condition for Eq. (13), and the solution of Eq. (13) is the initial
condition for Eq. (12) on the next step of time. Both equations
should be replaced by finite-difference schemes if the Boltzmann
equation is solved numerically.

The method of the direct numerical solution of the Boltzmann
equation was used to analyze different problems. Among them,
the problem of an unsteady state heat and mass transfer in a vapor
film during film boiling [17,18] is the most similar to the subject of
this paper. The method of direct numerical solution enabled to
solve this problem using non-stationary approach and to clarify
the behavioral peculiarities of a vapor film at different stages of
the process. In particular, it was established that vapor may be con-
densed in a vapor film during the unsteady state heating of a cold
liquid by a hot body.
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Taking the method of the direct numerical solution of the Boltz-
mann equation as the basis, we developed similar method for the
numerical solution of the kinetic equation for droplet size distribu-
tion function. While developing this method, we took into account
the following differences between Eqs. (10) and (6):

(a) In Eq. (6), the distribution function is differentiated with
respect to main variable r, whereas the Boltzmann equation
(10) does not imply differentiation with respect to velocity
component nx.

(b) The Boltzmann equation is an integer-differential one, while
the kinetic equation for droplet size distribution function is a
differential one, with the solution of the Boltzmann equation
comprising a complex calculation of the collision integral,
which requires a long computing time.

(c) The right-hand side of the Boltzmann equation is conserva-
tive, while the right-hand side of the condensation kinetics
equation is non-conservative; i.e., the existence of the
right-hand side in the Boltzmann equation has no effect on
the preservation of the total mass, pulse, and energy of vapor
molecules, whereas, in the condensation equation, the right-
hand side influences the number of droplets, their total vol-
ume, etc.

In the vapor homogeneous condensation problem, the following
equations describing droplet nucleation and growth may be used
as analogs of equations of free molecular flow (12) and spatially
uniform relaxation (13):

of
ot
þ oð_rf Þ

or
¼ 0; ð14Þ

of
ot
¼ I

qR
dðr � rcrÞ: ð15Þ

From physical point of view the formation of droplets (15) should
be first stage, and growth of droplets (14) should be second one.
The solution of (15) is the initial condition for (14), and the solution
of (14) is the initial condition for (15) on the next step of time.

For numerical solution of Eqs. (14) and (15) the droplet radius
calculation region should be limited. The natural lower limit is
the critical radius, and some sufficiently large radius rmax can be ta-
ken as the upper limit. The distribution function at r = rmax should
always be equal to zero. In the calculation region, computational
grid should be introduced with the critical radius as the first node
of the grid.

Eqs. (14) and (15) should be replaced by finite-difference
schemes. In Eq. (15) the delta-function should be removed or
approximated. It can be done as follows. Eq. (15) is integrated over
all particle radii:Z 1

rcr

of
ot

dr ¼ I
qR

: ð16Þ

Then the integral in (16) is replaced by the sum over all the grid
nodes:

X
i

ofi

ot
Dri ¼

I
qR

: ð17Þ

Here i is a node number in the droplet radius grid. According to (15),
only the distribution function at the critical radius can be variable,
because at r – rcr the right side of (15) is equal to zero. Therefore, all
the terms in the left side of (17), except for the first one, are equal to
zero. So the final form of the difference scheme for the nucleation
equation is as follows:

f jþ1
1 � f j

1

Dt
Dr1 ¼

I
qR

: ð18Þ
Here the value of distribution function f1 corresponds to the critical
radius, Dr1 = r2 � r1, and j is a time step number.

At the growth stage new droplets do not form; therefore, the fi-
nite-difference scheme for Eq. (14) should imply that the zero mo-
ment of the distribution function (i.e., the number of droplets)
remains constant as follows:

o

ot

Z 1

rcr

f dr ¼ 0: ð19Þ

In the numerical solution, the integral in (19) is replaced by the sum
over all grid nodes. Time and droplet radius are independent vari-
ables; hence, the order of differentiation and integration can be
changed. Thus, following condition can be obtained from (19):

XN

i¼1

f jþ1
i ðri � ri�1Þ ¼

XN

i¼1

f j
i ðri � ri�1Þ: ð20Þ

The droplet growth equation is solved using the explicit difference
scheme having first-order accuracy with respect to time and coordi-
nate as follows:

f jþ1
i � f j

i

Dt
þ

_rj
if

j
i � _rj

i�1f j
i�1

ri � ri�1
¼ 0: ð21Þ

Similar difference scheme was used for the free molecular flow
equation (12) in [16]. Difference scheme (21) satisfies the condition
of a constant zero moment (20), if the distribution function at
r = rmax always remains equal to zero.

If the scheme (21) is used, then following condition of stability
should be fulfilled:

Dt 6 Dr=maxð _rÞ: ð22Þ

This condition means that each droplet can move only to an adja-
cent mesh of the droplet radius grid during their growth.

The general order of the calculations at each time step is as
follows:

(1) The growth rate of at all of the grid nodes and the nucleation
rate are calculated.

(2) The nucleation equation (18) is solved.
(3) The droplet growth equation (21) is solved.
(4) The distribution function moments, new values of the

vapor–gas mixture temperature, the supersaturation ratio
and mass fraction of vapor are calculated.

To solve the equations, it is necessary to represent the rates of
nucleation and droplet growth as explicit functions of the current
values of the temperature, the supersaturation ratio, and the vapor
concentration in the mixture. The critical radius also depends on
the supersaturation ratio, so the droplet radius grid should vary.
However, variations in the supersaturation ratio cause the critical
radius to vary quite slowly (in an inverse proportion to its loga-
rithm); therefore, at each time step, a new grid is formulated with
its first node being equal to the current value of rcr.

4. Calculation results and discussion

Process of condensational relaxation was studied for two mix-
tures. In both cases incondensable gas was argon, vapor was cesium
in the first case and ethane in the second one. Droplet growth regime
was free molecular for cesium–argon mixture and transitional for
ethane–argon mixture. Solution for mixture of cesium and argon al-
lowed testing of the developed method, because the kinetic equation
(6) had been solved previously by method of moments. Fig. 1 pre-
sents the Knudsen number dependence on time during condensa-
tion in both the mixtures. The average droplet radius was taken as
the characteristic size in the Knudsen number.



0.1 10 100
0.1

1

10

100

1000

C
2

H
6
 - Ar

 Cs - Ar

t, mks

Kn

1

Fig. 1. The time dependence of the Knudsen number in the course of bulk
condensation.

0.001 0.010 0.100
0.001

0.01

0.1

1

10

100

321

f,
 1

022
 k

g
-1

m
-1

r, mkm

Fig. 3. Distribution functions for mixture of cesium and argon.

552 N.M. Kortsensteyn et al. / International Journal of Heat and Mass Transfer 52 (2009) 548–556
We used the Frenkel–Zeldovich formula [19] to calculate the
nucleation rate and the Fuchs interpolation formula to calculate
the droplet growth rate. This formula can be used at arbitrary
Knudsen number, and it is written as follows [20]:

_r ¼ aðpv � psÞ
ql

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRT=lv

p 1þ a
D

ffiffiffiffiffiffiffiffiffiffiffiffi
RT

2plv

s
r2

r þ k

 !�1

: ð23Þ

Here ql is density of liquid, and D is diffusion coefficient.

4.1. Free molecular regime of droplet growth

Initial parameters for mixture of cesium and argon were given
as follows. Pressure of vapor–gas mixture was 0.017 MPa, temper-
ature was 560 K, and ratio between partial pressures of vapor and
gas was 0.138. At these parameters initial supersaturation ratio
was equal to 9.956.

Fig. 2 illustrates the time dependences for the temperature of
the vapor–gas mixture, the supersaturation ratio, and the number
density of droplets during the condensation relaxation process. It is
known that the heat release due to condensation is proportional to
the rate of droplet volume growth. This value is proportional to the
squared droplet radius if droplet growth rate does not depend on
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Fig. 2. Temperature, supersaturation ratio and number density of droplets for
mixture of cesium and argon.
radius. Therefore, at the initial stage (during the induction period
[2]) the formation and growth of droplets does not lead to varia-
tions in the temperature and the supersaturation ratio. As a result,
the rate of nucleation is virtually constant and an increase in the
number of droplets obeys a linear law. When droplets become rel-
atively large, the temperature begins to rise and the supersatura-
tion ratio declines. Because the rate of nucleation strongly
depends on the supersaturation ratio, the formation of new drop-
lets soon ceases.

The evolution of the droplet size distribution function is illus-
trated in Fig. 3. It can be seen that the pattern of the distribution
function corresponds to a constant formation rate of droplets dur-
ing the induction period (curve 1). Soon after end of the induction
period (curve 2) the distribution function changes according to
reduction in the nucleation rate. By a time moment corresponding
to approximately four induction periods (curve 3), the distribution
function acquires its final form without formation of new droplets.
Note that the right-hand branch of the distribution function shifts
along the droplet size axis without distortions (curves 1–3), thus
indicating that formed droplets grow at a constant rate. The results
obtained by the proposed method both qualitatively and quantita-
tively coincide with ones obtained earlier by the method of mo-
ments [2–4].

4.2. Transitional regime of droplet growth

Successful testing of the proposed new method allowed us to
apply this method to the case of intermediate Knudsen numbers.
The results presented in this section were obtained for an ethane
(vapor) and argon (gas) mixture with initial pressure of 0.2 MPa,
temperature of 160 K, and ratio between partial pressures of the
vapor and gas of 0.25. Under these conditions the droplet growth
regime changes from free molecular to continual. At the onset of
the process, only droplets with an almost critical radius are present
in the system, Knudsen number is much larger than unity, and
their growth regime is near to free molecular one. With time, the
droplets grow, their radii become comparable with the free path,
and the growth regime changes.

In this case the method of moments is difficult to use because
differential equations for moments (9) cannot be written. So inte-
ger-differential equation (8) should be used, but they are very dif-
ficult to solve. However, the method of moments can be modified
as follows. The rate of droplet growth is calculated with use of the
Fuchs formula, in which the droplet radius r was replaced by the
average radius of droplets rd. Such approach was used in [10] to
study turbulent vapor flow with condensation in Laval nozzle. If
this calculation procedure for the growth rate is used, then mo-
ment equations remain differential because droplet growth rate



0.05 0.10 0.15 0.20

1.0

2.0

3.0

4.0

5.0

6.0

r, mkm

f,
 1

022
 k

g-1
m

-1

3 mks

2 

1 

3 
2 1 

mks
mks

mks

mks

mks

Fig. 5. Distribution function for mixture of ethane and argon (solid and dashed lines
are for r and rd in the Fuchs formula, respectively).

N.M. Kortsensteyn et al. / International Journal of Heat and Mass Transfer 52 (2009) 548–556 553
becomes the same for all droplets. When the moment equations
are solved numerically, the average radius, which is required for
calculating the growth rate, is determined from the moments cal-
culated on a previous time step.

In order to verify the validity of this approach, we compared the
results obtained by our numerical method with and without this
approximation. We obtained two solutions for the mixture of eth-
ane and argon in which the rate of the droplet growth was calcu-
lated from the current and average radii.

The time dependences of the vapor–gas mixture temperature,
the supersaturation ratio, and the number density of droplets are
shown in Fig. 4. Results for different procedures of droplet growth
rate calculation do not differ significantly. Comparison of Fig. 4
with Fig. 2 indicates that decrease in the Knudsen number does
not qualitatively change the character of the time dependences
of the temperature, the supersaturation ratio, and the number den-
sity of droplets. Similar to the free molecular droplet growth re-
gime, an induction period is observed. Note that the induction
period of the ethane–argon mixture is shorter than one of the ce-
sium–argon mixture. This fact is associated with a corresponding
increase in the density of the vapor–gas mixture due to a lower
temperature and higher pressure.

Evolution of the droplet size distribution function is shown in
Fig. 5 for both average and current radius in the Fuchs formula. It
is easy to see that the distribution functions are qualitatively dif-
ferent. The droplet growth rate does not depend on droplet radius
for rd in the Fuchs formula as well as for free molecular regime; and
it decreases with increase of droplet radius for r. So in the first case
profile of distribution function moves without deformation, and in
the second case it becomes narrower.

4.3. Dependence of the saturation pressure on droplet radius

In general, saturation pressure over curved surface depends not
only on temperature but on curvature of this surface. For spherical
droplets this dependence has the following form:

ps ¼ psðT; rÞ ¼ ps
1ðTÞ exp

rcr ln s
r

� �
: ð24Þ

Method of moments is difficult to use even for free molecular re-
gime of droplets growth, if this dependence is taken into account.
In this case it follows from the Fuchs formula (23) for large Knudsen
numbers that droplet growth rate depends on droplet radius, and
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equation for moments remain integer-differential and difficult to
solve. However, it is not obvious that a problem should be solved
taking account of dependence (24). Conversely, it is usually as-
sumed that saturation pressure depends on droplet radius only
for droplets of very small size, so this dependence can be neglected.

Method of direct numerical solution allowed solving the kinetic
equation for droplet size distribution function with taking account
of (24) and to clarify how saturation pressure dependence on drop-
let size affects characteristics of volume condensation process. For
both mixtures we considered two variants of saturation pressure
calculation:

(i) Saturation pressure depends only on temperature, i.e.,
ps ¼ ps

1ðTÞ.
(ii) Saturation pressure depends on temperature and droplet

radius, i.e., ps = ps(T,r).

Fig. 6 illustrates the time dependences for the temperature of
the vapor–gas mixture, the supersaturation ratio, and the number
density of droplets for mixture of argon and cesium. For variant (ii),
in the case of the allowance for the saturation pressure dependence
on the droplet radius, the induction period is longer, by approxi-
mately a factor of 1.5, than in the case of variant (i), where this
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dependence is ignored. In the former case, the stationary value of
the droplet-number density increases proportionally. Comparing
the time dependences for temperature and the supersaturation
within the condensation regions, we can conclude that, for both
variants, the indicated quantities attain values close to each other.
However, there exists a certain time shift; i.e., the duration of the
relaxation period increases if we take into account the dependence
of the saturated-vapor pressure on the current droplet radius.
Apparently, this is associated with the fact that the growth rate
for droplets of the size slightly exceeding the critical size is consid-
erably lower for variant (ii) than for variant (i).

Dynamics for the formation of the droplet size distribution
function is presented in Fig. 8 for mixture of argon and cesium.
The droplet size distribution functions for the variants under dis-
cussion are considerably different in the region of near-critical
droplet size. There exists the tendency to a decrease in their differ-
ence with time. On the right side corresponding to the supercritical
droplet size, the situation is noticeably distinguished. As is seen,
the tendencies to the transformation of the droplet-size distribu-
tion functions have a common character with the above-noted
time retardation of the condensation–relaxation processes for vari-
ants (i) and (ii). Similar form of distribution function was obtained
in [21]. Authors of that paper held that large values of distribution
function for small droplets cannot be obtained with help of classic
nucleation theory. It can be seen from Fig. 7 that this conclusion is
correct only if saturation pressure is not considered to be depen-
dent on droplet radius.

Dynamics for the droplet fractional composition of the con-
densation aerosol is presented in Fig. 8 for the same mixture.
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Only one fraction of droplets having the near-critical size is pres-
ent during the induction period for both variants. Further, due to
the growth of the droplets formed and the slowing down of the
nucleation process, the formation of the additional fraction of
supercritical droplets occurs. Upon completing the induction per-
iod, the rapid depletion of the near-critical droplet fraction takes
place, which is accompanied by the appearance of new fractions
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of super-critical droplets. It should be noted that significant dif-
ference of distribution functions led to considerably smaller dif-
ference of fractional compositions. The reason for this is that
range of droplet radius is very narrow for high values of distribu-
tion function for variant (ii).

The same calculations were carried out for mixture of argon
and ethane. Time dependences for temperature of vapor–gas mix-
ture, supersaturation ratio and numerical density of droplets
(Fig. 9) are similar to results presented above for mixture of argon
and cesium. In both cases duration of induction period and sta-
tionary density of droplets is for variant (ii) larger than for variant
(i). Evolution of distribution function (Fig. 10) and fractional com-
position of aerosol (Fig. 11) are similar also. Essential feature of
moderate Knudsen numbers is decrease of time lag during pro-
cess of condensation for variant (ii) in comparison with
variant (i).

The divergence in results obtained for different Knudsen num-
bers are associated with that droplet growth rate depends on ra-
dius differently. For moderate Knudsen numbers droplet growth
rate can be calculated by the Fuchs formula (22), for free molec-
ular regime this equation transforms into Hertz–Knudsen
formula:

_r ¼ aðpv � psÞ
ql

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRT=lv

p : ð25Þ

In (25) droplet growth rate can depend on droplet size only if the
dependence (24) is taken into account. If droplet radius increases
then saturation pressure tends to inferior limit and droplet growth
rate tends to superior one as provided by (25). For moderate Knud-
sen numbers this effect is less noticeable because both numerator
and denominator in the Fuchs formula (23) are increasing functions
of droplet radius.
5. Conclusion

The method of the direct numerical solution of the kinetic equa-
tion developed before by authors was used for the study of the bulk
condensation at fast creation of supersaturation state in vapor–gas
mixtures cesium–argon and ethane–argon. The regime of droplets
growth for the first mixture was a free molecular one, for the sec-
ond one the regime was transient – from the free molecular to con-
tinual one.

The use of the method developed has shown that in the first
case the direct numerical solution and the method of moments
produced the same results. In the second case the results obtained
by the developed method and by the method of moments with
simplified equation for the droplet growth rate were compared.
It follows from the results of the comparison that in the second
case the simplified method can be used for finding the integral
parameters of condensation aerosol. However, the calculation of
droplet size distribution function by means of this method can lead
to substantial errors.

It was shown that the solution of the kinetic equation without
taking into account the dependence between saturation pressure
and droplet size led to understatement of condensational relaxa-
tion time and numerical density of droplets. Furthermore, in this
case the profile of droplet size distribution function was distorted
for the near critical droplet radius. It was shown that these effects
were more apparent for large Knudsen numbers.
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